Recent tools for population abundance estimation adjustment and their use in long-term French red-legged partridge survey

Christiane Jakob*, Françoise Ponce-Boutin
Office national de la chasse et de la faune sauvage, DER CNERA PFSP - Tour du Valat, Le Sambuc, 13200 Arles (France)
*Corresponding author: Christiane Jakob (christiane.jakob@oncfs.gouv.fr)

Abstract

The consistency of population estimates is crucial for long term surveys, especially for conservation and management purposes, and particularly for game species as the red-legged partridge Alectoris rufa. Most monitoring programs simply assume that count indexes are proportionally related to abundance. However, this assumption cannot be made when detection varies spatially and temporally, as it is mostly the case. Advances of statistical tools allow now detection modeling using spatially and temporally repeated count data and lead to less-biased estimates than raw counts, and sometimes to less effort in the field. In the future, they might become highly relevant for monitoring programs; however field biologists might have to be trained or assisted for data modeling. We illustrate the case of the French survey of red-legged partridge populations (Alectoris rufa), the method being also used for the survey of a northern Italian population.

Key-words: Alectoris rufa, CMR, count method, detectability, bird survey, N-mixture model, population estimates.

The need for adjusted surveys

Consistent estimates in bird surveys are crucial for many purposes and a multitude of techniques is available (Bibby et al. 1992). Surveys must be employed, when we need a reliable estimate or an index (estimate unadjusted for detection issues) of the population size of a particular species in a given area (Sutherland et al. 2004).

Surveys are undertaken to elucidate avian-habitat relationship, to estimate spatial distribution or to evaluate the impact of anthropogenic development on nature conservation value (Blondel et al. 1981). Furthermore, in exploited (e.g. hunted) species, a consistent prediction of population trends may help to maintain the population sustainably and to set management priorities (Julliard et al. 2004, Johnson 2008).

A complete count of bird numbers or "true census" in an area is hardly ever possible for a multitude of reasons (Sutherland et al. 2004), therefore "incomplete counts" are mostly used. Either, they are based on indexes or on reliable abundance estimates.

Generally, when using indexes, we assume that counts are strictly proportional to true abundance. To estimate a number, N , of individuals present in an area from a raw da-
ta sample count, C , of that area, the expected value of the count is given by

$$
\mathrm{E}(\mathrm{C})=\mathrm{Np}
$$

where p is the "detection probability" (Nichols et al. 2000) or "index ratio" (Bart \& Earnst 2002). The use of C (raw count data) to estimate the change in N over time (i.e. trend), requires the already above mentioned "proportionality assumption" (Thompson 2002), i.e. that there is no trend in p (McCallum 2005). In most cases, this exact proportionality between indexes (i.e. unadjusted counts) and true abundance cannot be assumed (Pollock et al. 2002, Williams et al. 2002, Kery \& Schmidt 2008). Statistically, two crucial issues regarding the use of an abundance index are i) sampling and ii) observability/detectability, which account two kinds of errors, namely sampling and observation errors (Aubry et al. 2012). Precision of abundance index and underestimation e.g. of obervation errors are treated elsewhere (Aubry et al. 2012).

Here we focus on one of the most complex problems for a survey program based on reliable abundance estimates: the variability of detection due to different factors intervening during the count surveys. Sources of varia-

Jakob and Ponce-Boutin

tion can be intrinsic to the life history traits of a bird (e.g. season and daytime activity, territoriality), or related to the biotic environment, e.g. vegetation density among and within the sites, the varying population density, or perception of observer, e.g. the experience (Pollock et al. 2002, Alldredge et al. 2007a, Aubry et al. 2012). Even with the highest standardization of a field protocol, these variations cannot be completely excluded without testing for them.

Therefore, the relation among the abundance estimate and population size remains often unknown, ignoring the magnitude of the underlying bias. To obtain such reliability and among space and time comparability of abundance estimates we have to adapt surveys, not yielding only indexes, but real abundance (and in the step further: density). This need for valid abundance estimates has spawned a number of models for estimating p, which is a detection probability (Burnham 1981, Nichols et al. 2000). Detection probability estimates are then used to account for animals present but not detected on surveys (Thompson 2002).

Although accuracy and precision of most techniques currently used to count birds has been questioned because of their failure to provide estimates of detection probability p (Nichols et al. 2000, Rosenstock et al. 2002), surprisingly 95% of surveys still deal with naïve data counts (McCallum 2005). This might partly be related to the novelty of methods (but some methodology exists since the 80 's), the unfamiliarity of modeling for field workers, and the difficulty of obtaining sufficient data on possible variation sources.

Two groups of count methods (i.e. field protocols related to specific statistical tools) for detectability estimation can be coarsely distinguished, both applied in a growing number of surveys of national interest. First, a group we call here for simplicity the "point count methods" (Presence - absence, Capture-mark-recapture, Removal, Double count), and second, the distance sampling (Borralho et al. 1996, Buckland et al. 2001, Williams et al. 2002). Main differences between the two include the assumptions for detection in the field (see paragraph i), e.g. the assumption of the method is that all animals present at distance $=$ 0 are detected (Buckland et al. 2001), which is not given e.g. during visual counts in closed vegetation areas.

Distinct from other vertebrates, birds are mostly surveyed without capturing or marking individuals. A number of passive sampling techniques, e.g., spot-mapping, line transects, and point counts, are commonly used for estimating numbers of birds. A taxonomy of sampling and analytical methods is given by Thompson (Thompson 2002). Several methods are mainly adapted to bird surveys at a
larger scale (Sutherland et al. 2004), such as models adapted to repeated point counts, allowing estimation of detection probability and therefore adjustment of abundance estimates later onwards (Buckland et al. 2008). Somewhat more complex than working with raw counts, the data treatment of these results allows us to obtain mean abundance with confidence intervals and to follow changes in bird populations at a larger scale and time period. Population management policies can then be based on these trends.

Thus, globally, statistical tools for adjusted survey counts strongly progressed in recent times, supporting the field protocols, which are constraint by field conditions and species biological traits (Besnard 2009). In the framework of regional and national surveys and networks in monitoring programs multi-species or mono-species surveys are multiplying recently (Escandell 2005, van Strien et al. 2010).

The approach chosen in the Alectoris rufa survey in southern France is now also applied on survey data of partnership in Northern Italy and forthcoming in north-eastern Spain.

This paper had two purposes: i) to give a general overview on recent tools for abundance estimate adjustment via detectability by assisting field biologists and managers in understanding the concepts underlying detection probability and ii) to use the example of the existing French redlegged partridge survey network (since 1992) to depict an a-posteriori integration of estimate adjustment.

I. Recent tools for abundance estimate adjustment via detectability

It is now acknowledged that the relation of abundance index and real abundance in surveys, especially for birds, is rarely linear and might be divided into in four general categories (Besnard 2009). The survey type a shows the very rare model case, where the index is proportional to the real bird number, and a quasi exhaustive sampling was done (Fig.1).

In type \mathbf{b}, the relation is linear, but index increases slower than abundance, detection probability is thus not 1 but constant, independent from bird density. In the present case the detection probability is $0.5(50 \%)$. In the type \mathbf{c}, the index is proportional to true abundance of birds up to a certain bird density, and then it shows a saturation effect, for example, because at high density it can be difficult for observers to distinguish all individuals or birds modulate their song interval to be heard. This is a classic case for territorial male birds and index would not be reliable. In the

Figure 1. Real number of birds present in function of abundance index; the four most common categories (a-d) for this relation (see text) are shown.
type \mathbf{d} the index does not increase until a certain threshold value, then increases rapidly and saturates at a new threshold. Such a case corresponds to e.g. male singers, without song activity until a certain bird density where they stimulate each other, and saturating afterwards as in type \mathbf{c}. As cases \mathbf{c} and \mathbf{d} are frequent in bird field surveys, simple indexes have to be tested or treated with caution when used for conservation and management purposes.

Hence, to be able to make inferences from raw count data (C) of abundance estimates without worrying for untested assumptions, it is necessary to introduce statistical tools for the estimation of abundance (N). The generalized estimate is $\mathrm{N}=\mathrm{C} / \mathrm{p}$ (Nichols et al. 2000), where the common value of the parameter p is the probability of detecting a typical individual.

The greatest difficulty consists in determining p. Distance sampling models, now frequently used in bird surveys, will establish the detection probability as a function of the distance from the observer, making necessary that detection is 1 at a distance of 0 m (Buckland et al. 2001). This assumption is not always fulfilled, e.g. for visual redlegged partridge detection in closed vegetation habitats (Borralho et al. 1996). Plots are chosen and may be sampled from fixed points or a transect line (Ramsey \& Scott. 1979, Rosenstock et al. 2002).

In the group that we call here "point-count models" the detection probability p includes the probability that the bird sings or produces some other detectable cue (ps) and the probability that it is detected, given that it sings (pd/s) (Farnsworth et al. 2002), also called the availability of the bird (McCallum 2005). In comparison, distance sampling considers that all animals present perform detectable acts during the survey period, thus in fact considering
only pd / s, not p . Therefore, for surveys based on discrete cues, such as aural signals, e.g. bird song, this subdivision makes sense. As low availability might be a problem for non-detection, observers have to take it into account, either by choosing optimal availability conditions (e.g. daytime with highest activity, season etc.) or by triggering cue appearance, e.g. by playback use. We obtain p through the following:

$$
\mathrm{p}=\mathrm{ps}(1-(1-\mathrm{p} 1 \mathrm{~d}) \mathrm{s})
$$

where p1d is the probability of detecting an average cue, and s is the number of cues, i.e., songs or other detectable acts that the bird actually produces during the count period.

Several of the above mentioned methods are "rapid surveys" (e.g. presence-absence), owing the advantage to be less time consuming in the field than marking programs.

II) Adjusted abundance estimates in survey of Alectoris rufa

We take here intentionally the example of a farmland and game species with a large distribution and existing datasets, in our opinion illustrating well the possibility of a posteriori data treatment and the interest for acquisition of long-term data. The species declined for the past 30 years across European countries (Birdlife International 2004). The French population was estimated to be 300,000 pairs in 1998 (Reitz 2003), with an annual hunting bag of 1.5 Mio individuals, including those released (Ponce-Boutin et al. 2009). In Europe, the species declined about 25\%
over the last 20 years (Aebischer \& Potts 1994). Regular inquiries on hunting bags do not provide a reliable longterm assessment of population trends, even if a comparison between 1995 and 2000 gives some indices (PonceBoutin et al. 2009).

As reported above, there is a need to include the idea of count adjustment via detection in surveys aiming at long term and larger scale monitoring. It seems crucial to obtain such viable long-term trends for a game species as the redlegged partridge, as populations are suffering from i) habitat loss or deterioration in southern France (main distribution area outside Spain) in particular due to agriculture abandonment, ii) release of reared birds, impacting negatively on wild bird populations when used to artificially increase hunting bags (Ponce-Boutin et al. 2006).

The red-legged partridge survey has been implemented since 1992 in the Mediterranean part of France. Since 2010, the survey protocol is also applied in Northern Italy by Tizzani et al. (Tizzani 2011) and hopefully in 2013 on some territories of Northern Spain. The applied field technique consists in a three times repeated aural point count transect reinforced by playback (see http://www. oncfs.gouv.fr/IMG/protocole_denomb/protocole_denombrement_perdrix_rouge_2012.pdf for detailed protocol), comparable to common point counts 1970 (Ferry \& Frochot 1970).

We obtained over 16.000 resulting data from 47 sites on naïve counts of partridges (Alectoris rufa). These raw
data can not be compared directly with estimates of other raw data results of other field techniques, regularly employed for partridge counts (e.g. quadratic sampling, kilometric index). To counteract this lack, from 2009 onwards, a slight reorganization of field protocols (division of the initial aural count period into small time intervals) and the application of recent statistical tools such as CMR and later a special class of occupancy models, so called N-mixture models, were used to improve and adjust the estimates (Jakob et al. 2010).

At the beginning of the study, the main problem of existing spring counts in red-legged partridges beared the bias of variability in abundance estimation and unknown detection (Pépin \& Fouquet 1992). Frequent sources of variation were differences in vegetation cover, variable song activity during daytime (Fig. 2), differences in observer experience, management and bird densities. Furthermore other count methods, such as kilometric index and quadrat sampling were applied sometimes, and conversion among results from different methods can not be done, so there was no generalized information on a local or regional scale.

The aim was to find a survey method adapted for a broad number of cases (i.e. date, open habitat or matoral, different experience of field workers), to counterbalance availability of a low-responsive species via playback broadcast, to minimize field effort vs precision optimization and to test for linearity of abundance estimates pro-

Figure 2. Results from French red-legged partridge survey. The decreased detection probality (up to 0.8, i.e. 80%) during daytime classes (1 to 5). Best detection found for $1=1 \mathrm{~h}$ before sunrise, $2=$ sunrise; $3=1 \mathrm{~h}$ after sunrise. Axes: Individual detection probability ($\mathrm{y}-\mathrm{axis}$) in function of time classe (X - axis). Mean value (full line), and confidence intervals (dotted line).
vided by the different methods, i.e. comparable with other methods (e.g. other galliforms [Bernard-Laurent \& Laurent 1984]). Thus, we aimed to produce comparable abundances in time and space through estimated detectability.

First, we used CMR model on a small data set in order to test playback effect on availability of a low-responsive species and to increase detectability (Alldredge et al. 2007b). Indeed, Dawson et al.'s results (Dawson et al. 1995) suggest that the lower values of p are more sensitive to sampling variation. The results showed that the supplementary use of playback during point count surveys counterbalances low availability and the detection increases significantly during sessions with playback, improving abundance estimates (Jakob et al. 2010).

In a second step the whole 19 years dataset was modelled by N-mixture model (Royle 2004) to cope with variable sampling situations (i.e. covariates such as habitat closure), to obtain confidence intervals for estimates (Fig. 3), and to compare via a second model not detailed here results among survey methods, including the Square Sampling (considered as an exhaustive census method), the Kilometric Abundance Index by car (Ricci 1989) and the Blank Beat (Ponce-Boutin et al. 2001).

The results are encouraging (Jakob et al. 2013), as we obtained moderate confidence intervals of abundance estimates for each site and year. Comparison of methods was possible via a linear relationship among density estimations of the different methods.

Figure 2 shows the example of the relationship between daytime and detection probability and more precise-
ly the availability of the red-legged partridges to detection decreasing during morning hours. Such an effect (as well as those of season vegetation closure) can be taken in account either by the field protocol (e.g. avoiding the hours with less detection) or being afterwards included as covariate in the applied model.

Up to now, in the framework of the French red-legged partridge survey network, we can offer to participating field biologists and site managers a rapid and cost efficient field method, supported by a statistical tool and able to generate viable estimates for the spring counts, which are also comparable among methods and sites (about 50 sites). An outlook for the future will be to test its general validity for generating large scale and long term data, including numerous sites in other parts of the species distribution area and maybe testing linearity with further count results (Borralho et al. 1996). The conversion into density values for local management purposes is also tested and will outcome soon (e.g., Villain 2012).

In summary, there is a promising new approach for generalized data in bird monitoring, in terms of viable estimates for large-scale population abundance and population density trends (BirdLife International 2004, van Strien et al. 2010).

Acknowledgements - We are grateful to Aurélien Besnard from CNRS EPHE Montpellier, collaborating with us on this subject since several years. Many thanks to all technicians from ONCFS, ONF, Conseil regional, to the volunteers from hunting societies and land owners, Alessandria University all participating with interest to the field work of the survey network.

Figure 3. Example of abundance estimates for one site based on results of 18-years count data treated by probability of detection tool (Nmixture model). The estimate of mean male number per point and year with SE is given.

REFERENCES

Aebischer N.J. \& Potts G.R., 1994. Red-legged partridge (Alectoris rufa). In: Tucker G.M. \& Heath M.F. (eds.), Birds in Europe: their conservation status. BirdLife Cambridge. pp. 214-215.
Alldredge M.W., Pollock K.H., Simons T.R., Collazo J.A. \& Shriner S.A., 2007a. Time-of-detection method for estimating abundance from point-count surveys. Auk 124: 653-664.
Alldredge M.W., Simons T.R. \& Pollock K.H., 2007b. A field evaluation of distance measurement error in auditory avian point count surveys. J. Wildl. Manage. 71: 2759-2766.
Aubry P., Pontier D., Aubineau J., Berger F., Léonard Y., Mauvy B. \& Marchandeau S., 2012 Monitoring population size of mammals using a spotlight-count-based abundance index: How to relate the number of counts to the precision? Ecological Indicators 18: 599-607.
Bart J. \& Earnst S., 2002. Double sampling to estimate density and population trends in birds. Auk 119: 36-45.
Bernard-Laurent A. \& Laurent J.L., 1984. Méthode de recensement des perdrix bartavelles (Alectoris graeca saxatilis, Bechstein 1805) au printemps; applications dans les Alpes-maritimes. Gibier Faune Sauv. 4: 69-85.
Besnard A., 2009. Estimation d'effectifs, passez la méthode au crible. Espaces naturels 26: 23-26.
Bibby C.J.N., Burgess N.D. \& Hill D.A., 1992. Bird census techniques, San Diego, CA.
Birdlife International, 2004. Birds in the European Union: a status assessment, Wageningen, The Netherlands.
Blondel J., Ferry C. \& Frochot B., 1981. Point counts with unlimited distance. Studies in Avian biology 6: 414-420.
Borralho R., Rego F. \& Pinto P.V., 1996. Is driven transect sampling suitable for estimating red-legged partridge Alectoris rufa densities? Wildl. Biol. 2: 259-268.
Buckland S.T., Anderson D.R., Burnham K.P., Laake J.L. \& Borchers D.L., 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, Oxford.
Buckland S.T., Marsden S.J. \& Green R.E., 2008. Estimating bird abundance: making methods work. Bird Conservation Int. 18: 91-108.
Burnham K.P., 1981. Summarizing remarks: Environmental influences. Studies in Avian biology 6: 324-325.
Dawson D.K., Smith D.R. \& Robbins C.S., 1995. Point count length and detection of forest neotropical migrants birds. USDA Forest Service Gen. Tech. Rep. PSW-GTR. pp. 35-43.
Escandell V., 2005. Monitoring common breeding birds in Spain. The SACRE programme. Report 1996-2005. SEO/Birdlife, Madrid.
Farnsworth G.L., Pollock K.H., Nichols J.D., Simons T.R., Hines J.E. \& Sauer JR., 2002. A removal model for estimating detection probabilities from point-count surveys. Auk 119: 414425.

Ferry C. \& Frochot B., 1970. L'avifaune nidificatrice d'une forêt de Chênes pédonculés en Bourgogne: étude de deux successions écologiques. Terre Vie 24: 153-250.
Jakob C., Ponce-Boutin F. \& Besnard A., 2013. Coping with Heterogeneity to detect species on a large scale: N -mixture modelling applied to red-legged partridge counts. J. Wildl. Manage. Vol: pp.
Jakob C., Ponce-Boutin F., Besnard A. \& Eraud C., 2010. On the efficiency of using song playback during call count surveys of Red-legged partridges (Alectoris rufa). Eur. J. Wildl. Res. 56: 907-913.
Johnson D.H., 2008. In Defense of indices: The case of bird surveys. J. Wildl. Manage. 72: 857-868.

Julliard R., Jiguet F. \& Couvet D., 2004. Common birds facing global changes: what makes a species at risk? Global change Biol. 10: 148-154.
Kery M. \& Schmidt B.R., 2008. Imperfect detection and its consequences for monitoring for conservation. Community Ecology 9: 207-216.
McCallum D.A., 2005. A Conceptual Guide to Detection Probability for Point Counts and Other Count-based Survey Methods. USDA Forest Service Gen. Tech. Rep. PSW-GTR.
Nichols J.D., Hines J.E., Sauer J.R., Fallon F.W., Fallon J.E. \& Heglund P.J., 2000. A double-observer approach for estimating detection probability and abundance from point counts. Auk 117: 393-408.
Pépin D. \& Fouquet M., 1992. Factors affecting the incidence of dawn-calling in red-legged and grey partridges. Behav. Processes 26: 167-176.
Pollock K.H., Nichols J.D., Simons T.R., Farnsworth G.R., Bailey L.L. \& Sauer J.R., 2002. Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13: 1-15.
Ponce-Boutin F., Brun J-C. \& Ricci J-C., 2006. La perdrix rouge et sa chasse en région méditerranéenne française: résultats d'une enquête. Faune sauvage 274: 40-47.
Ponce-Boutin F., Mathon J. \& Brun T.L., 2009. Impact of game crops intensification and hunting management on red-legged partridge. In: Gamebird 2006: Quail VI and Perdix XII. Warnell School of Forestry and Natural Resources, Athens, GA, USA, 124-127.
Ponce-Boutin F., Mathon J.F. \& Puchala J.B., 2001. Population dynamics of red-legged partridge (Alectoris rufa). IUGB Congress-Perdix IX, Chypre.
Ramsey F.L. \& Scott. J.M., 1979. Estimating population densities from variable circular plot surveys. In: M.Cormack R., Patil J.P. \& Robson D.S. (eds.), Sampling biological populations. International Cooperative Publishing House, 155-181.
Reitz F., 2003. Le statut communal de la Perdrix grise et de la Perdrix rouge en France: résultats d'une enquête. Faune sauvage 258: 25-33.
Ricci J-C., 1989. Une méthode de recensement des perdrix rouges (Alectoris rufa L.) au printemps par indice kilomètrique d'abondance (IKA PRV) dans le midi-méditerranéen. Gibier Faune Sauv. 6: 145-158.
Rosenstock S.S., Anderson D.R., Giesen K.M., Leukering T. \& Carter M.F., 2002. Landbird Counting techniques: Current practices and an alternative. Auk 119: 46-53.
Royle J.A., 2004. N-mixture models for Estimating Population size from spatially replicated counts. Biometrics 60: 108-115.
Sutherland W.J., Newton I. \& Green R. (eds.) 2004. Bird ecology and conservation: a handbook of techniques. Oxford University press, Oxford.
Thompson W.T., 2002. Toward reliable bird surveys: accounting for individuals present but not detected. Auk 119: 18-25.
Tizzani P., 2011. Does the use of playback affect the estimates of numbers of Red-legged Partridge Alectoris rufa? In: Abstracts of First Conference on Mediterranean population of the genus Alectoris, 52.
van Strien A., Houten C.V. \& Soldaat L., 2010. Towards a new generation of breeding bird atlas: annual atlas on site-occupancy models. In: Bird Numbers 2010. Proc. 18th Conf. Eur. Bird Census Council, Cacères, Spain, 1-7.
Villain F., 2012. Distance de détectabilité au chant de la Perdrix rouge (Alectoris rufa): un outil pour convertir une abondance en densité. Parcours Ingénierie en Ecologie et en Gestion de la Biodiversité (IEGB). Faculté des Sciences, Montpellier.
Williams B.K., Nichols J.D. \& Conroy M.J., 2002. Analysis and management of animal populations. Academic Press, San Diego, California, USA.

