FRANCESCO VELATTA

Province of Perugia, Territory and Environment Area - Via Angelucci 8, Madonna Alta, 06128 Perugia (Italy) (francesco.velatta@provincia.perugia.it)

Abstract – This study aims to verify if there can be differences between protected and free hunting areas as regards bird populations, taking into account the whole provincial territory of Perugia. Starting from a sample of 1266 points visited from year 2000 to year 2005 both in winter and in spring, 137 couples of points were individuated, each of them representing a point belonging to the protected territory and another belonging to the non-protected territory. The two groups of points (protected and non-protected) were compared according to the following parameters, calculated on a seasonal scale: species richness, total abundance, abundance of each species, abundance of some superspecific *taxa*, rarity index (Blana 1980). In winter, both species richness and total abundance were significantly greater within protected areas, the same showing a markedly higher value of the rarity index; significantly higher abundance values within protected stations were observed for 4 superspecific groups (Phasianidae, Falconiformes, *Turdus*, Corvidae) and for 10 species; only one superspecific group (Alaudidae) and 3 species were significantly more abundant within non-protected areas. In spring, no significant differences emerged between protected and non-protected areas in terms of richness, abundance and rarity index; only one superspecific group (Phasianidae) and 9 species came out to be significantly more abundant within the protected territory, 6 species within the free hunting area. The analysis undertaken reveals how during shooting season the hunting activity limits the settlement of the potential bird communities.

Key-words: hunting effects, Bird communities, Central Italy, point-counts.

INTRODUCTION

Directive 79/409/CEE (currently Directive 2009/147/CE) on the conservation of wild birds allows hunting activity at the expense of bird populations, by establishing (article 7, paragraph 1) the huntable species within each Member State of the EU and by setting the condition that "the hunting of these species does not jeopardise conservation efforts in their distribution". The considerable amount of contentions about hunting pushed the European Commission to enact in 2008 an interpretative document, "Guide to sustainable hunting under the Bird Directive, Council Directive 79/409/CEE on the conservation of wild birds". In paragraph 2.4.2 this document pinpoints that "Member States must ensure that hunting is compatible with the maintenance of the population of the species concerned at a satisfactory level" and that "the practice of hunting must not represent a significant threat to efforts for the conservation of both huntable as well as non-huntable species". In paragraph 2.6.15 it is recognized the possible role of disturbance of hunting that, if too intensely played, can force birds to make continuous movements and flights, causing negative repercussions on the individual energy balance and on the population survival rate, giving rise to an additive mortality that adds up to shooting. Among the mitigation proposed, there is the creation of undisturbed refuge areas (paragraph 2.6.22), that allow birds to feed and rest. Hunting in Italy is a widely popular activity, with more than 700000 practitioners (Schipani 2009). Hunting is regulated by the national law 11 February 1992, n. 157 and by regional laws within the sector. The practice is possible from the beginning of September to the end of January, following species-specific hunting calendars different for each region. The Italian law subdivides the rural territory (territorio agro-silvo-pastorale - TASP) into different kinds of areas:

- protected areas, where hunting is prohibited: parks, national and regional reserves, refuge areas, restocking areas, mountain passes, state forests. On the whole, protected areas must cover from 20% to 30% of the TASP of each region;
- game preserves (aziende venatorie AV), where the exploitation of the game is assigned through an exclusive concession to a private citizen. Species that can

be taken are individuated by the regional authority and are by custom in limited number with respect to the complete list of the huntable species. All other species are non-huntable. AV don't have to exceed 15% of the regional TASP;

 programmed hunting territory, subdivided into sub-regional hunting districts (Ambiti Territoriali di Caccia

 ATC). Every hunter has access to one ATC that belongs to the region where he lives, and eventually he can access to other ATC (extra-regional as-well) upon agreement of their management bodies. The quantitative planning of the taking is often rough: plans based on the knowledge of the size and of the trend of population are frequently adopted for Ungulates, rarely for Bird Fauna.

The yet mentioned Directive 2009/147/CE imposes on Member States to encourage the necessary researches for protection, management and exploitation of bird species (art. 10), with particular attention to the subjects listed in Annex V of the Directive, among which is included "assessing the influence of methods of taking wild birds on population levels". Despite the Directive and the importance of hunting at a national level, in Italy the effect of hunting on Bird communities has been valued till now quite exclusively with reference to wetlands (for example: Faralli 1991, Faralli & Lambertini 1991, Tinarelli *et al.* in press, Velatta 1996), while the terrestrial environments have been rarely considered. The only paper on this subject is that of Lambertini (1991), who analyzed the evolution of a Bird community in a forest area (Parco Regionale di San Rossore-Migliarino-Massaciuccoli - Tuscany, Central Italy) after the closing of hunting, comparing it with a similar reference area where hunting was still acting. The aim of my work is to concur to plug this gap by verifying if there are differences in Bird populations between protected and free hunting areas. In doing so, an entire provincial territory (that of Perugia) is taken into consideration. As far as I know, this is in Italy the first analysis not concerning wetlands conducted on a so wide spatial scale.

METHODS

The province of Perugia (Umbria region, Central Italy) covers an area of 6342 km² and it is characterized by an eastern highland and a western hilly sector with small plains corresponding to the main river valleys. According to the geobotanical map of Umbria (Orsomando *et al.* 2004), the mainly represented land use categories are woods (39,4%), sowable lands (36,6%) and grasslands (10,1%); urban and productive settlements cover 5,4% of the surface only.

During the survey the surface area of the protected zones was 914 km², equivalent to 14,4% of the provincial territory. Protected areas as a whole included all the environmental typologies present in the province of Perugia, even if in a non-proportional manner compared to their to-

coverage %

Figure 1. Land use in the whole province of Perugia and in the protected areas.

tal extension (Fig. 1); in particular, regarding the totality of the territory, a great diffusion of wetlands and grasslands and a small diffusion of cultivated areas.

The provincial territory is subdivided into two Territorial Hunting Areas (ATC PG1 and ATC PG2), and during the study period their extensions were respectively 2458 and 2377 km² (without protected areas, game preserves and built-up areas). During the same years, the corresponding average density of hunters was equal to 7,6 individuals/km² inside ATC PG1 and to 7,4 individuals/km² inside ATC PG2 (Tab. 1).

For the purposes of the analysis, the data collected from year 2000 to 2005 by the "Osservatorio Faunistico Regionale" were employed. OFR carried on both in spring (May-June) and in winter (December- January) six seasonal surveys based on the repeated visits of about 1700 points distributed within the entire umbrian territory (Velatta *et al*. 2010).

The localization of the stations was obtained by the application of a sampling scheme inspired to the north-american Breeding Bird Survey (Robbins *et al.*1986): inside each UTM square 10x10 km, a route was traced along secondary roads, chosen in order to cross the most represented environments within the square; the stations were set along such routes at fixed intervals of 1 km, assuring for each square a density of a sampling point every 5 km².

The method used in the field was a version of point-counts. In spring was followed the methodology adopted by the MITO2000 national project (Fornasari *et al.* 2002), whose aim is to monitor the populations of common breeding birds: in each station was undertaken a ten minutes survey in the morning, during which all the individuals seen or heard were recorded, making a distinction between contacts occurred within or beyond 100 metres from the observer. Winter surveys were undertaken in the same way, except for their shorter duration (8 minutes for each station) due to the reduced amount of daylight.

To the extent of this analysis the 1266 stations placed

within the province of Perugia were considered. Among them, the following two groups of points were selected:

- "protected stations" (from now on indicated as P; N=168): stations within protected areas;
- "non-protected stations" (from now on indicated as NP; N=871): stations more than 500 metres away from protected areas and from game preserves (AV).

This analysis does not include the AV because they represent a kind of "hybrid" between protected areas and programmed hunting territory.

To each selected station were assigned the altitude and the % coverage (within a 100 metres radius) of the following 8 land use categories (obtained from the geobotanical map of Umbria - Orsomando *et al.* 2004): woods, shrubby vegetation, grasslands, wetlands, rocky-environments, sowable lands, arboreal cultivations, urban and productive settlements.

The above mentioned environmental variables were standardized by means of the following algorithm:

 $x_{stand} = (x_{obs} - mean)/STD$ where mean and STD are those of the general sample "P + NP".

The stations of the two groups were then grouped into 6 height classes:

altitude limits (m a.s.l.)	NP stations	P stations
0-250	120	15
251-375	228	26
376-500	154	17
501-750	190	41
751-1000	131	36
>1000	48	33

Within each height class the Euclidean distance among each station P and each station NP was calculated starting from the standardized environmental variables. Then, cou-

Table 1. Number and density of hunters registered in the two ATC of the province of Perugia.

hunting season	hunters r	egistered	rs/km²	
	ATC PG1	ATC PG2	ATC PG1	ATC PG2
2001-2002	14655	17285	6,0	7,3
2002-2003	19164	17837	7,8	7,5
2003-2004	19598	17685	8,0	7,4
2004-2005	20122	17613	8,2	7,4
2005-2006	19624	17054	8,0	7,2
mean	18633	17495	7,6	7,4

Table 2. Mean values of environmental variables inside the groups of protected (P) and non-protected (NP) stations. Each group is made up of 137 stations.

environmental variable		group of	f stations
		Р	NP
height (m a.s.l.)		656	654
woods %	within 100 m	45.2	45.1
	within 300 m	48.1	50.2
	within 500 m	48.5	51.2
shrubby vegetation %	within 100 m	0.2	0.2
	within 300 m	0.5	0.4
	within 500 m	0.7	0.7
grasslands %	within 100 m	14.5	14.6
	within 300 m	13.6	12.5
	within 500 m	13.7	12.5
wetlands %	within 100 m	0.0	0.0
	within 300 m	0.6	0.1
	within 500 m	0.7	0.1
rocky- environments %	within 100 m	0.0	0.0
	within 300 m	0.1	0.1
	within 500 m	0.2	0.1
sowable lands %	within 100 m	29.8	29.9
	within 300 m	29.7	29.6
	within 500 m	29.1	28.7
arboreal cultivations %	within 100 m	3.5	3.4
	within 300 m	3.1	3.0
	within 500 m	3.1	3.1
urban and productive settlements %	within 100 m	6.8	6.8
	within 300 m	4.3	4.0
	within 500 m	4.0	3.5

ples of similar stations "P-NP" were created, obtained associating to each station of the group P the stations of the group NP set at the shorter Euclidean distance and eliminating the couples of stations whose Euclidean distance was above 1. In this way, 137 couples of stations "P-NP" were individuated (Tab. 2); it is worth noting that the environmental homogeneity of the two samples is high even increasing to 500 metres the distance radius within which are calculated the covering values of the different land use categories.

Inside the two groups of stations the predominant environments are woods, sowable lands and grasslands, and together cover approximately the 90% of the stations; the less represented typologies are rocky- environments and wetlands, with paltry covering values (less than 1%).

The above mentioned procedure, which is preliminary to the true analysis, was undertaken with the precise goal of evaluating the effects of protection under the same environmental conditions. In other terms, the fact that the two groups of stations are homogeneous under the altimetric and land use profile, brings us the well-founded certainty that possible differences within bird populations are almost exclusively due to the diverse management system (hunting - not hunting).

The two groups of 137 stations were then compared (mean calculation and Wilcoxon's non-parametric test for matched pairs) with regards to the following parameters, calculated by considering both the contacts within 100 metres only and the total number of contacts without distance limits:

- 1. species richness per station during winter;
- 2. species richness per station during spring;
- 3. species richness per station during spring, considering the resident species only (species present all year

round, even if with a partial turnover of the population);

- abundance (= number of individuals belonging to all species) per station during winter;
- 5. abundance per station during spring;
- abundance per station during spring, considering the resident species only;
- abundance per station during winter, separately calculated for the following superspecific *taxa*: Phasianidae, Falconiformes (including Accipitridae, Pandionidae, Falconidae), Picidae, Alaudidae, *Turdus*, Corvidae, Fringillidae;
- abundance per station during spring, separately calculated for the same above mentioned superspecific *taxa*;
- 9. abundance of each species per station during winter;
- 10. abundance of each species per station during spring.

For each station, the average of the values gathered each year (generally 6) was considered . In case of lack of one or more years in a couple of stations "P - NP", only the years with both the stations covered were entered in the analysis. By way of summary, for both P and NP were considered 754 winter point-counts and 812 spring ones.

Finally, for each group of stations (P and NP) was calculated the rarity index value (IR - Blana 1980) whose formula is: IR = \sum (Fi % / Qi %), where:

- Fi % = percentage of point counts undertaken in the group of stations examined where the species was found;
- Qi % = percentage of point counts undertaken within the whole regional territory (Velatta *et al.* 2010) where the species was found.

The rarity index ascribes as much more high scores to a sample of stations as more rare the species are at the regional level and as more frequent the species are inside the same sample. Therefore, it is an index of the "conservation value" of a specific bird community. As the previous parameters, also the rarity index was calculated in two different ways, that is to say considering the contacts within 100 metres only and their total number.

RESULTS

Considering the contacts within 100 metres only, species richness and abundance do not show significant differences between group P and group NP. If we consider all the contacts without limits of distance, both richness and winter abundance are significantly higher in P stations (Tab. 3), with mean values exceeding the values of group NP to an extent of 10% and 16% respectively. Analyzing the abundance values of the 7 superspecific groups considered (Tab. 4), during winter there are statistically significant differences between P and NP in the following cases:

- Phasianidae, Corvidae, Falconiformes, *Turdus* more abundant in P. With regards to the last two *taxa* the difference is not significant if we only consider the contacts within 100 metres;
- Alaudidae, more abundant in NP.

During spring, the only group that shows significant differences of abundance between the two samples of stations is that of Phasianidae, more abundant in P (but with a definitely lower gap than in winter).

As regards the single species, the abundance in the protected territory and in the free hunting one are shown in Tab. 5 (winter) and in Tab. 6 (spring). 10 species (11.0%) out of 91 recorded during winter are significantly more abundant in P, only 3 (3.3%) in NP. The gap seems smaller during spring: 9 species (7.4%) out of 121 are significantly more abundant in P, 6 species (5.0%) more abundant in NP. Five species significantly more abundant in winter within the protected areas, were also reported in the work of Lambertini (1991) as increasing after the establishment of the hunting ban; these species are: *Columba palumbus, Garrulus glandarius, Phylloscopus collybita, Turdus merula, Sylvia melanocephala*.

Within the NP sample the rarity index takes on clearly lower values compared to those observed in P (Fig. 2);on the contrary, in spring the two groups of stations do not show relevant differences.

DISCUSSION

The study shows that in the province of Perugia hunting is a factor that limits the settlement of potential bird communities in the territories where shooting is practiced. In fact, during the hunting season (winter surveys), the main "macro-indicators" (species richness, abundance, rarity index) are higher within the protected areas. Higher richness and abundance values in the protected area than those recorded in the free hunting one, were observed by Lambertini (1991) too.

The lack of significant differences about winter richness and abundance, that can be underlined considering the contacts within 100 metres only, arguably depends on an insufficient sampling, that is to say that probably the number of contacts is too low so that differences between the two types of territories could emerge.

The "inhibitory" effect of hunting seems to be at least

Table 3. Species richness and abundance: comparison between protected and non-protected stations (in **bold** type the significant differences).

parameter	contacts considered	m	ean		Wilcox	on's test	
		Р	NP	P/NP	Z	P (2-tailed)	
anarias richness (winter)	within 100 metres	5.3	4.9	1.07	-1.659	0.097	
species richness (whiter)	all the contacts	7.3	6.7	1.10	-2.965	0.003	
anagias righnage (apring)	within 100 metres	7.8	7.4	1.06	-1.370	0.171	
species fieldess (spring)	all the contacts	12.4	12.0	1.03	-0.860	0.390	
anaging righness (apring regident appaigs only)	within 100 metres	6.4	6.0	1.06	-1.525	0.127	
species nemiess (spring - resident species only)	all the contacts	9.6	9.2	1.04	-1.422	0.155	
······································	within 100 metres	1.5	1.4	1.03	-0.441	0.659	
species nemiess (spring - migratory species only)	all the contacts	2.8	2.8	1.00	-0.098	0.922	
abundanca (winter)	within 100 metres	11.9	11.4	1.04	-0.844	0.398	
abundance (white)	all the contacts	27.0	23.3	1.16	-2.588	0.010	
abundance (apring)	within 100 metres	14.1	14.5	0.97	-0.467	0.640	
abundance (spring)	all the contacts	27.4	28.3	0.97	-0.784	0.433	
abundance (apring resident apoies only)	within 100 metres	11.1	11.6	0.95	-0.523	0.601	
abundance (spring - resident species only)	all the contacts	19.9	21.5	0.92	-1.459	0.145	
abundance (apring migratory aposics only)	within 100 metres	3.0	2.9	1.03	-0.391	0.696	
abundance (spring - inigratory species only)	all the contacts	7.6	6.8	1.12	-0.563	0.573	

partly reversible: during spring (when hunting season is closed), the differences between the two samples do not reach the statistical significance level. A similar trend was observed during a previous survey undertaken on Trasimeno Lake (the main wetland of the Province) before its closing to hunting (Velatta 1996).

The event is partly explained by the fact that in spring several summer visitors species arrive, and they are not affected by hunting pressure. However, even considering the resident species only, we can notice the lack of significant differences about spring richness and abundance between protected and non-protected areas. This phenomenon could depend on the fact that in Central Italy different population of many apparently residential species alternate during the year: some locally breeding individuals can migrate (thus avoiding hunting) and can be replaced by birds from the northern latitudes.

Autumn-winter influxes of foreign individuals are for instances known for *Columba palumbus*, *Turdus merula*, *Fringilla coelebs*, *Sturnus vulgaris* (Andreotti *et al.* 2010, Spina & Volponi 2008).

However, it is also confirmed that a seasonal re-distribution of some resident species occurs on a strictly local basis, as demonstrated by data regarding *Phasianus colchicus* and *Corvus cornix*, two species that show insignificant or scarce migratory movements. This re-distribution could take place according to two different modalities:

· decrease in abundance within hunting areas after the

taking of a part of the individuals, followed by the irradiation of the populations belonging to protected areas, that compensates for the loss;

 active displacement, at the beginning of the hunting season, of individuals from hunting areas to the protected ones, the latter used as refuges, followed by a reverse movement when hunting season ends.

However things turn out, these mechanisms could not be sufficient to prevent the establishment of negative population trends within all species. If we take two huntable species as an example, *Phasianus colchicus* and *Columba palumbus*, both characterized by a strong lack of balance in winter abundance between protected and non-protected areas, the first shows a negative trend of the breeding population at a regional level, while the second shows a positive trend (Velatta *et al.* 2010). As regards *Phasianus colchicus*, a management strategy based on the creation of protected areas only (at least considering their current extension) seems to be inadequate to keep a satisfactory level of the provincial population and should be supported by a reliable planning of the taking.

It is important to underline that the effect of hunting disturbance does not affect the huntable species only: strong lack of balance in winter between protected and non-protected areas has been recorded for the group of diurnal raptors and for some protected small passerines (*Periparus ater, Phylloscopus collybita* and *Sylvia melano-* Table 4. Abundance of the superspecific groups considered: comparison between protected and non-protected stations (in **bold** type the significant differences).

group of species	season	mean ab	mean abundance		Wilcox	on's test					
		Р	NP	P/NP	Z	P (2-tailed)					
contacts within 100 metres											
	winter	0.046	0.001	37.60	-4.559	0.000					
Phasianidae	spring	0.177	0.071	2.51	-3.430	0.001					
E 1 . C	winter	0.082	0.073	1.12	-0.612	0.541					
Falconiformes	spring	0.034	0.056	0.60	-1.624	0.104					
D:-: 1	winter	0.118	0.105	1.12	-0.400	0.689					
Picidae	spring	0.107	0.095	1.13	-0.729	0.466					
Aloudidoo	winter	0.106	0.361	0.29	-3.403	0.001					
Alaudidae	spring	0.463	0.333	1.39	-1.245	0.213					
Tundua	winter	0.941	0.788	1.19	-0.956	0.339					
Turaus	spring	0.890	0.779	1.14	-1.536	0.124					
Corridoo	winter	1.318	1.075	1.23	-2.106	0.035					
Corvidae	spring	0.885	0.737	1.20	-1.631	0.103					
Eringillidaa	winter	3.995	3.733	1.07	-1.406	0.160					
Filigilidae	spring	2.261	2.280	0.99	-0.743	0.458					
		n mean abundance									
group of species	season	mean ab	undance		Wilcox	on's test					
group of species	season	mean ab P	undance NP	P/NP	Wilcox Z	on's test P (2-tailed)					
group of species	season	mean ab P all the cont	undance NP acts	P/NP	Wilcox Z	on's test P (2-tailed)					
group of species	season winter	mean ab P all the cont 0.158	nundance NP acts 0.011	P/NP 14.44	Wilcox Z -4.726	on's test P (2-tailed) 0.000					
group of species Phasianidae	season winter spring	mean ab P all the cont 0.158 0.840	undance NP acts 0.011 0.282	P/NP 14.44 2.99	Wilcox Z -4.726 -4.709	0.000 0.000					
group of species Phasianidae	season winter spring winter	mean ab P all the cont 0.158 0.840 0.227	undance NP acts 0.011 0.282 0.154	P/NP 14.44 2.99 1.47	Wilcox Z -4.726 -4.709 -2.371	on's test P (2-tailed) 0.000 0.000 0.018					
group of species Phasianidae Falconiformes	season winter spring winter spring	mean ab P all the cont 0.158 0.840 0.227 0.150	undance NP acts 0.011 0.282 0.154 0.160	P/NP 14.44 2.99 1.47 0.94	Wilcox Z -4.726 -4.709 -2.371 -0.085	on's test P (2-tailed) 0.000 0.000 0.018 0.933					
group of species Phasianidae Falconiformes Divides	season winter spring winter spring winter	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335	undance NP acts 0.011 0.282 0.154 0.160 0.278	P/NP 14.44 2.99 1.47 0.94 1.20	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154					
group of species Phasianidae Falconiformes Picidae	season winter spring winter spring winter spring	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360	oundance NP acts 0.011 0.282 0.154 0.160 0.278 0.363	P/NP 14.44 2.99 1.47 0.94 1.20 0.99	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982					
group of species Phasianidae Falconiformes Picidae	season winter spring winter spring winter spring winter	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341	oundance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048					
group of species Phasianidae Falconiformes Picidae Alaudidae	season winter spring winter spring winter spring winter spring	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341 0.880	oundance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589 0.793	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58 1.11	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976 -1.054	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048 0.292					
group of species Phasianidae Falconiformes Picidae Alaudidae	season winter spring winter spring winter spring winter spring winter spring winter	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341 0.880 1.269	undance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589 0.793 0.955	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58 1.11 1.33	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976 -1.054 -2.000	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048 0.292 0.045					
group of species Phasianidae Falconiformes Picidae Alaudidae <i>Turdus</i>	season winter spring winter spring winter spring winter spring winter spring winter spring	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341 0.880 1.269 1.875	undance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589 0.793 0.955 1.982	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58 1.11 1.33 0.95	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976 -1.054 -2.000 -0.693	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048 0.292 0.045 0.489					
group of species Phasianidae Falconiformes Picidae Alaudidae <i>Turdus</i>	season winter spring winter spring winter spring winter spring winter spring winter spring winter	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341 0.880 1.269 1.875 5.546	undance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589 0.793 0.955 1.982 3.799	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58 1.11 1.33 0.95 1.46	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976 -1.054 -2.000 -0.693 -3.400	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048 0.292 0.045 0.489 0.001					
group of species Phasianidae Falconiformes Picidae Alaudidae <i>Turdus</i> Corvidae	season winter spring winter spring winter spring winter spring winter spring winter spring winter spring	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341 0.880 1.269 1.875 5.546 2.682	undance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589 0.793 0.955 1.982 3.799 2.235	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58 1.11 1.33 0.95 1.46 1.20	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976 -1.054 -2.000 -0.693 -3.400 -1.782	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048 0.292 0.045 0.489 0.001 0.075					
group of species Phasianidae Falconiformes Picidae Alaudidae <i>Turdus</i> Corvidae	season winter spring winter spring winter spring winter spring winter spring winter spring winter spring winter spring winter	mean ab P all the cont 0.158 0.840 0.227 0.150 0.335 0.360 0.341 0.880 1.269 1.875 5.546 2.682 8.063	undance NP acts 0.011 0.282 0.154 0.160 0.278 0.363 0.589 0.793 0.955 1.982 3.799 2.235 6.675	P/NP 14.44 2.99 1.47 0.94 1.20 0.99 0.58 1.11 1.33 0.95 1.46 1.20 1.21	Wilcox Z -4.726 -4.709 -2.371 -0.085 -1.424 -0.023 -1.976 -1.054 -2.000 -0.693 -3.400 -1.782 -1.858	on's test P (2-tailed) 0.000 0.000 0.018 0.933 0.154 0.982 0.048 0.292 0.045 0.489 0.001 0.075 0.063					

cephala). As regards *Periparus ater*, it is possible that the difference observed does not depend on protection, but on the fact that within the sample of protected areas the average coverage of conifer reforestations is higher (10.8% compared to 2.4%), and in Umbria they represent the typical habitat of the species.

Only 3 out of 10 species significantly more abundant within protected areas during winter resulted to be more abundant in spring: *Phasianus colchicus, Columba palumbus, Periparus ater.* However, in comparison to winter the above species show a considerable attenuation of the gap. The existence of (few) species (all belonging to small passerines) significantly more abundant in non-protected areas has a difficult interpretation: the phenomenon could maybe depend on subtle environmental differences that were not pointed out at the scale of the survey; another suggesting theory is that the major density of predators that characterizes the protected territory (as demonstrated in this study for Corvidae and Falconiformes in winter) could determine the decrease of some prey species.

Table 5. Species recorded in winter and comparison of their abundance between protected and non-protected stations (in bold type the significant differences). In the "status" column the asterisk (*) shows the species hunted in Umbria in derogation of the dispositions of Directive 2009/147/CE.

species	status	tus contacts considered mean abundance		mean abundance		on's test
			Р	NP	Z	P (2-tailed)
Cuanus alan	matastad	within 100 metres	0.000	0.000		
Cygnus olor	protected	all the contacts	0.001	0.000	-1.000	0.317
4.4.55.54.55.55	huntahla	within 100 metres	0.000	0.000		
Anus creccu	nuntable	all the contacts	0.002	0.000	-1.000	0.317
Ange platimburches	huntahla	within 100 metres	0.000	0.000		
Anas piatyrnynchos	nuntable	all the contacts	0.055	0.012	-1.604	0.109
A	14-1-1-	within 100 metres	0.000	0.000		
Ayinya jerina	nuntable	all the contacts	0.049	0.000	-1.000	0.317
A14	14-1-1-	within 100 metres	0.000	0.000		
Alecioris ruja	nuntable	all the contacts	0.012	0.000	-1.000	0.317
	1 / 11	within 100 metres	0.011	0.000	-1.000	0.317
Peraix peraix	nuntable	all the contacts	0.011	0.000	-1.000	0.317
	1 . 11	within 100 metres	0.035	0.001	-4.505	0.000
Phasianus colchicus	huntable	all the contacts	0.136	0.011	-4.703	0.000
		within 100 metres	0.004	0.002	-0.447	0.655
Phalacrocorax carbo	huntable *	all the contacts	0.751	0.011	-3.035	0.002
_		within 100 metres	0.000	0.000		
Egretta garzetta	protected	all the contacts	0.006	0.000	-1.633	0.102
		within 100 metres	0.000	0.000		
Casmerodius albus	protected	all the contacts	0.001	0.002	-0.577	0.564
		within 100 metres	0.005	0.004	-0.378	0.705
Ardea cinerea	protected	all the contacts	0.011	0.009	-0.367	0.714
		within 100 metres	0.002	0.000	-1.414	0.157
Circus aeruginosus	protected	all the contacts	0.019	0.001	-1.342	0.180
		within 100 metres	0.001	0.002	-0.577	0.564
Circus cyaneus	protected	all the contacts	0.002	0.004	-0.447	0.655
		within 100 metres	0.010	0.007	-0.636	0.525
Accipiter nisus	protected	all the contacts	0.014	0.010	-0.785	0.432
		within 100 metres	0.048	0.045	-0.192	0.848
Buteo buteo	protected	all the contacts	0.143	0.101	-1.715	0.086
		within 100 metres	0.000	0.001	-1.000	0.317
Aquila chrysaetos	protected	all the contacts	0.000	0.006	-1.633	0.102
		within 100 metres	0.001	0.000	-1.000	0.317
Pandion haliaetus	protected	all the contacts	0.002	0.000	-1.414	0.157
		within 100 metres	0.013	0.017	-0.756	0.450
Falco tinnunculus	protected	all the contacts	0.036	0.032	-0.346	0.729
		within 100 metres	0.002	0.000	-1.414	0.157
Falco columbarius	protected	all the contacts	0.002	0.000	-1.414	0.157
		within 100 metres	0.005	0.000	-1.633	0.102
Falco peregrinus	protected	all the contacts	0.008	0.000	-2.060	0.039
		within 100 metres	0.004	0.001	-0.816	0.414
Gallinula chloropus	huntable	all the contacts	0.006	0.001	-1.300	0.194
		within 100 metres	0.000	0.001	-1.000	0.317
Vanellus vanellus	huntable	11.4	0.054	0.027	0.271	0.786

species	status	contacts considered	mean abundance		Wilcox	on's test
			Р	NP	Z	P (2-tailed)
		within 100 metres	0.001	0.002	-0.447	0.655
Scolopax rusticola	huntable	all the contacts	0.001	0.002	-0.447	0.655
		within 100 metres	0.005	0.024	-0.707	0.480
Chroicocephalus ridibundus	protected	all the contacts	0.198	0.055	-0.943	0.345
x . , , , , , , ,		within 100 metres	0.004	0.106	-1.121	0.262
Larus michanellis	protected	all the contacts	0.117	1.914	-1.493	0.135
	1 / 11	within 100 metres	0.072	0.008	-2.256	0.024
Columba palumbus	nuntable	all the contacts	0.988	0.025	-3.398	0.001
Strontonolia doogooto	mustaatad	within 100 metres	0.006	0.038	-1.913	0.056
Sirepiopena aecuocio	protected	all the contacts	0.031	0.091	-1.888	0.059
Athena poctua	protected	within 100 metres	0.000	0.004	-1.732	0.083
Ainene nociua	protected	all the contacts	0.001	0.005	-1.342	0.180
Strix aluco	protected	within 100 metres	0.010	0.001	-1.289	0.197
Sirix anaco	protected	all the contacts	0.010	0.002	-0.962	0.336
Picus viridis	protected	within 100 metres	0.057	0.065	-0.203	0.839
1 icus viriuis	protected	all the contacts	0.255	0.220	-1.071	0.284
Dendrocopos major	protected	within 100 metres	0.060	0.041	-1.337	0.181
Denarocopos major	protected	all the contacts	0.078	0.058	-0.931	0.352
Dendrocopos minor	protected	within 100 metres	0,001	0.000	-1,000	0,317
Denarocopos minor	protected	all the contacts	0,001	0.000	-1,000	0,317
Galerida cristata	protected	within 100 metres	0,027	0.055	-1,313	0,189
Galeriaa Cristala	protected	all the contacts	0,061	0.089	-1,243	0,214
I ullula arborea	protected	within 100 metres	0,058	0.085	-0,982	0,326
Lanan arborea	protected	all the contacts	0,191	0.165	-0,179	0,858
Alauda arvansis	huntable	within 100 metres	0,020	0.221	-2,701	0,007
Aluudu ul vensis	nuntable	all the contacts	0,089	0.335	-2,152	0,031
Anthus pratensis	protected	within 100 metres	0,179	0.078	-1,364	0,173
	protected	all the contacts	0,230	0.127	-1,273	0,203
Motacilla cinerea	protected	within 100 metres	0,001	0.005	-1,089	0,276
monucum cincrea	protected	all the contacts	0.001	0.005	-1.089	0.276
Motacilla alba	protected	within 100 metres	0.043	0.090	-2.320	0.020
	protected	all the contacts	0.063	0.113	-1.768	0.077
Travladytes travladytes	protected	within 100 metres	0.157	0.136	-1.043	0.297
Troglouyies troglouyies	protected	all the contacts	0.178	0.167	-0.532	0.595
Prunella modularis	protected	within 100 metres	0.066	0.061	-0.020	0.984
	protected	all the contacts	0.101	0.103	-0.078	0.938
Prunella collaris	protected	within 100 metres	0.006	0.002	-0.756	0.450
	protocourd	all the contacts	0.006	0.002	-0.756	0.450
Erithacus rubecula	protected	within 100 metres	0.593	0.571	-0.411	0.681
	Protocourd	all the contacts	0.778	0.741	-0.148	0.882
Phoenicurus ochruros	protected	within 100 metres	0.021	0.025	-0.480	0.632
	protected	all the contacts	0,024	0.031	-0,556	0,578
Saxicola torauatus	protected	within 100 metres	0,036	0.039	-0,425	0,671
Samena ierquinis	protocourd	all the contacts	0,058	0.058	-0,219	0,827
Monticola solitarius	protected	within 100 metres	0,000	0.000		
	r	all the contacts	0,001	0.000	-1,000	0,317
Turdus torauatus	protected	within 100 metres	0,000	0.001	-1,000	0,317
_ So cans to relation	r	all the contacts	0,000	0.001	-1,000	0,317
						continued

species	status	tus contacts considered mean abundan		mean abundance		on's test
			Р	NP	Z	P (2-tailed)
T 1 1		within 100 metres	0,560	0.466	-1,549	0,121
Turdus merula	huntable	all the contacts	0,898	0.687	-2,522	0,012
		within 100 metres	0,187	0.157	-0,814	0,416
Turdus pilaris	huntable	all the contacts	0,219	0.233	-0,917	0,359
		within 100 metres	0.054	0.023	-1.597	0.110
Turdus philomelos	huntable	all the contacts	0.129	0.048	-1.752	0.080
		within 100 metres	0.050	0.039	-0.444	0.657
Turdus iliacus	huntable	all the contacts	0.080	0.064	-0.635	0.526
	1	within 100 metres	0.089	0.103	-0.699	0.485
Turaus viscivorus	protected	all the contacts	0.162	0.154	-0.483	0.629
o with with	1	within 100 metres	0.011	0.004	-1.897	0.058
Cettia cetti	protected	all the contacts	0.017	0.009	-1.178	0.239
<i>C:-4:-1-:::d:</i> -		within 100 metres	0.006	0.005	-0.333	0.739
Cisticola junciais	protected	all the contacts	0.006	0.007	-0.322	0.748
C.1.:		within 100 metres	0.137	0.164	-0.666	0.505
Sylvia alricapilla	protected	all the contacts	0.206	0.259	-1.264	0.206
C. L.: J - 4 -		within 100 metres	0,006	0.000	-1,342	0,180
Sylvia unaala	protected	all the contacts	0.007	0.000	-1.342	0.180
S -1-1		within 100 metres	0.112	0.082	-1.481	0.139
Sylvia melanocephala	protected	all the contacts	0.201	0.120	-2.366	0.018
DI11		within 100 metres	0.017	0.010	-1.225	0.221
Phylloscopus collybua	protected	all the contacts	0.027	0.011	-2.148	0.032
D 1 1		within 100 metres	0.078	0.050	-1.892	0.059
Kegulus regulus	protected	all the contacts	0.107	0.082	-1.573	0.116
D 1		within 100 metres	0.024	0.010	-1.839	0.066
Kegulus ignicapilia	protected	all the contacts	0.024	0.010	-1.839	0.066
Assithalos saudatus	protocted	within 100 metres	0.540	0.517	-0.269	0.788
Aeginaios caudaius	protected	all the contacts	0586	0.663	-1.068	0.285
Cvanistas caarulaus	protected	within 100 metres	0.443	0.473	-0.283	0.777
Cyanisies caeraieus	protected	all the contacts	0.591	0.647	-0.909	0.363
Parus major	protected	within 100 metres	0.367	0.285	-1.834	0.067
1 arus major	protected	all the contacts	0.518	0.453	-1.202	0.229
Paringrus ator	protected	within 100 metres	0.258	0.057	-4.301	0.000
1 eriparus aier	protected	all the contacts	0.311	0.071	-4.414	0.000
Poacila nalustris	protected	within 100 metres	0.101	0.116	-0.221	0.825
I beche patasiris	protected	all the contacts	0.116	0.150	-0.454	0.650
Sitta europea	protected	within 100 metres	0.129	0.108	-0.242	0.809
Sina europea	protected	all the contacts	0.198	0.190	-0.176	0.860
Corthia brachydaetyla	protected	within 100 metres	0.048	0.029	-1.422	0.155
	protected	all the contacts	0.057	0.039	-1.631	0.103
Lanius aroubitor	protected	within 100 metres	0.000	0.000		
	protected	all the contacts	0.001	0.000	-1.000	0.317
Garrulus olandarius	huntabla	within 100 metres	0.539	0.407	-2.563	0.010
Garraius gianaarius	nuntable	all the contacts	0.975	0.786	-2.382	0.017
Pica rica	huntable	within 100 metres	0.126	0.108	-0.393	0.695
τικά ριζά	nuntable	all the contacts	0.355	0.303	-0.907	0.365
Purrhocorar purrhocorar	protected	within 100 metres	0.019	0.000	-1.633	0.102
i yrnocorax pyrnocorax	protected	all the contacts	0.368	0.000	-1.826	0.068

species	status	contacts considered	mean abundance		Wilcox	on's test
			Р	NP	Z	P (2-tailed)
<i>a</i>		within 100 metres	0.107	0.099	-0.246	0.805
Corvus monedula	protected	all the contacts	0.637	0.532	-1.130	0.259
<i>c</i> :		within 100 metres	0.526	0.462	-0.237	0.813
Corvus cornix	huntable	all the contacts	3.211	2.177	-2.683	0.007
a. 1 .	1 . 11 .	within 100 metres	0.815	0.355	-0.182	0.856
Sturnus vulgaris	huntable *	all the contacts	1.928	1.353	-0.647	0.518
	1 4 11 *	within 100 metres	0.569	1.169	-1.825	0.068
Passer domesticus	nuntable *	all the contacts	1.202	2.232	-2.076	0.038
n (1	within 100 metres	0.275	0.421	-1.106	0.269
Passer montanus	protected	all the contacts	0.468	0.477	-0.262	0.793
n. · · · ·		within 100 metres	0.000	0.000		
Petronia petronia	protected	all the contacts	0.012	0.000	-1.000	0.317
N	1	within 100 metres	0.000	0.000		
Montifringilla nivalis	protected	all the contacts	0.073	0.000	-1.000	0.317
E · · · · · · · · · · · · · · · · · · ·	1 . 11 .	within 100 metres	2.233	2.206	-0.957	0.338
Fringilla coelebs	huntable *	all the contacts	4.823	3.903	-1.213	0.225
α	1	within 100 metres	0.121	0.087	-0.351	0.726
Serinus serinus	protected	all the contacts	0.179	0.381	-0.097	0.922
		within 100 metres	0.157	0.103	-0.336	0.737
Carduelis chloris	protected	all the contacts	0.194	0.133	-0.164	0.870
	1	within 100 metres	1.192	1.117	-1.580	0.114
Carauelis carauelis	protected	all the contacts	2.136	1.920	-1.791	0.073
		within 100 metres	0.096	0.057	-0.257	0.797
Carduelis spinus	protected	all the contacts	0.112	0.069	-0.277	0.782
	1	within 100 metres	0.147	0.064	-1.055	0.291
Carauelis cannabina	protected	all the contacts	0.557	0.151	-0.766	0.444
x · · · ,	1	within 100 metres	0.004	0.007	-0.378	0.705
Loxia curvirostra	protected	all the contacts	0.004	0.007	-0.378	0.705
D		within 100 metres	0.022	0.026	-0.412	0.680
Pyrrnuia pyrrnuia	protected	all the contacts	0.027	0.041	-0.373	0.709
C		within 100 metres	0.023	0.067	-0.168	0.867
Coccoinrausies coccoinrausies	protected	all the contacts	0.031	0.069	-0.076	0.940
E., b.,		within 100 metres	0.004	0.000	-1.342	0.180
Emberiza curineita	protected	all the contacts	0.102	0.000	-1.604	0.109
Fuch anis a sister	protostad	within 100 metres	0.093	0.146	-0.058	0.954
Emberiza cirius	protected	all the contacts	0.295	0.214	-0.574	0.566
Emboriza sia	protected	within 100 metres	0,006	0.002	-0,962	0,336
Emberiza cia	protected	all the contacts	0,006	0.002	-0,962	0,336
Embariza schoonistus	protected	within 100 metres	0,005	0.006	-0,816	0,414
Emberiza schoeniclus	protected	all the contacts	0,010	0.020	-0,368	0,713
Embariza calardra	protected	within 100 metres	0,017	0.089	-0,676	0,499
Embertza catanara	protected	all the contacts	0,034	0.096	-0,159	0,873

Table 6. Species recorded in spring and comparison of their abundance values between protected and non-protected stations (in bold type the significant differences). Not all species breed in the study area. In the "status" column the asterisk shows the species hunted in Umbria in derogation of the dispositions of Directive 2009/147/CE.

P NP Z P (2-tail) within 100 matrix 0.000 0.001 1.000 0.215	NP Z	Р			
within 100 matrice 0.000 0.001 1.000 0.215	0.001 -1.000				
A 1 4 1 1 4 11 WILLIN 100 Metres 0.000 0.001 -1.000 0.31	0.001 1.000	0.000	within 100 metres	1 / 11	
all the contacts 0.023 0.015 -0.681 0.496	0.015 -0.681	0.023	all the contacts	nuntable	Anas platyrnynchos
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres	1	A
Alectoris graeca protected all the contacts 0.000 0.003 -1.000 0.317	0.003 -1.000	0.000	all the contacts	protected	Alectoris graeca
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres	1 . 11	A1
<i>Alectoris ruja</i> huntable all the contacts $0.006 0.000 -1.342 0.180$	0.000 -1.342	0.006	all the contacts	nuntable	Alectoris ruja
within 100 metres 0.002 0.000 -1.414 0.157	0.000 -1.414	0.002	within 100 metres	1 / 11	
all the contacts 0.002 0.001 -0.577 0.564	0.001 -0.577	0.002	all the contacts	nuntable	Peraix peraix
within 100 metres 0.051 0.040 -0.393 0.694	0.040 -0.393	0.051	within 100 metres	1 . 11	
all the contacts 0.083 0.092 -0.060 0.952	0.092 -0.060	0.083	all the contacts	nuntable	Coturnix coturnix
within 100 metres 0.124 0.030 -3.865 0.000	0.030 -3.865	0.124	within 100 metres	1 . 1 1	DI · 11-
all the contacts 0.748 0.185 -5.212 0.000	0.185 -5.212	0.748	all the contacts	nuntable	Phasianus colchicus
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres	1 . 11 .	
Phalacrocorax carbo huntable * all the contacts 0.004 0.000 -1.000 0.317	0.000 -1.000	0.004	all the contacts	huntable *	Phalacrocorax carbo
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		NY
Nycticorax nycticorax protected all the contacts 0.000 0.002 -1.000 0.317	0.002 -1.000	0.000	all the contacts	protected	Nycticorax nycticorax
within 100 metres 0.001 0.000 -1.000 0.317	0.000 -1.000	0.001	within 100 metres		
Bubulcus ibis protected all the contacts 0.004 0.000 -1.000 0.317	0.000 -1.000	0.004	all the contacts	protected	Bubulcus ibis
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		_
<i>Egretta garzetta</i> protected all the contacts 0.002 0.002 0.000 1.000	0.002 0.000	0.002	all the contacts	protected	Egretta garzetta
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		
Ardea cinerea protected all the contacts 0.000 0.002 -1.414 0.157	0.002 -1.414	0.000	all the contacts	protected	Ardea cinerea
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		
Ardea purpurea protected all the contacts 0.011 0.000 -1.604 0.109	0.000 -1.604	0.011	all the contacts	protected	Ardea purpurea
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		
<i>Tachybaptus ruficollis</i> protected all the contacts 0.001 0.000 -1.000 0.317	0.000 -1.000	0.001	all the contacts	protected	Tachybaptus ruficollis
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		
Podiceps cristatus protected all the contacts 0.023 0.000 -1.000 0.317	0.000 -1.000	0.023	all the contacts	protected	Podiceps cristatus
	0.006 -0.707	0.002	within 100 metres		_
Pernis apivorus protected all the contacts 0.010 0.010 -0.243 0.808	0.010 -0.243	0.010	all the contacts	protected	Pernis apivorus
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		
Milvus migrans protected all the contacts 0.004 0.000 -1.000 0.317	0.000 -1.000	0.004	all the contacts	protected	Milvus migrans
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		
Milvus milvus protected all the contacts 0.002 0.000 -1.000 0.317	0.000 -1.000	0.002	all the contacts	protected	Milvus milvus
within 100 metres 0.000 0.001 -1.000 0.317	0.001 -1.000	0.000	within 100 metres		
<i>Circaetus gallicus</i> protected all the contacts 0.002 0.001 -0.447 0.655	0.001 -0.447	0.002	all the contacts	protected	Circaetus gallicus
within 100 metres 0.000 0.000	0.000	0.000	within 100 metres		_
<i>Circus aeruginosus</i> protected all the contacts 0.000 0.001 -1.000 0.317	0.001 -1.000	0.000	all the contacts	protected	Circus aeruginosus
within 100 metres 0.003 0.000 -1.342 0.180	0.000 -1.342	0.003	within 100 metres		~
<i>Circus pygargus</i> protected all the contacts 0.004 0.002 -0.707 0.480	0.002 -0.707	0.004	all the contacts	protected	Circus pygargus
within 100 metres 0.002 0.000 -1.414 0.157	0.000 -1.414	0.002	within 100 metres		
Accipiter gentilis protected all the contacts 0.002 0.000 -1.414 0.157	0.000 -1.414	0.002	all the contacts	protected	Accipiter gentilis
within 100 metres 0.002 0.004 -0.447 0.655	0.004 -0.447	0.002	within 100 metres		
Accupiter misus protected all the contacts 0.004 0.006 -0.905 0.366	0.006 -0.905	0.004	all the contacts	protected	Accipiter nisus

Wilcoxon's test species status contacts considered mean abundance Р NP Z P (2-tailed) within 100 metres 0.014 0.027 -1.229 0.219 Buteo buteo protected all the contacts 0.074 0.081 -0.265 0.791 within 100 metres 0.000 0.001 -1.000 0.317 Aquila pomarina protected 0.000 all the contacts 0.000 within 100 metres 0.000 0.000 Pandion haliaetus protected all the contacts 0.001 0.000 -1.000 0.317 within 100 metres 0.000 0.000 Falco naumanni protected all the contacts 0.000 0.004 -1.000 0.317 within 100 metres 0.009 0.016 -1.153 0.249 Falco tinnunculus protected 0.047 0.054 -0.090 0.928 all the contacts within 100 metres 0.001 0.001 0.000 1.000 Falco subbuteo protected all the contacts 0.001 0.006 -1.414 0.157 within 100 metres 0.001 0.001 0.000 1.000 Gallinula chloropus huntable all the contacts 0.005 0.001 -1.134 0.257 within 100 metres 0.000 0.000 Fulica atra huntable 0.000 all the contacts 0.200 -1.000 0.317 within 100 metres 0.000 0.000 Himantopus himantopus protected all the contacts 0.000 0.005 -1.000 0.317 within 100 metres 0.000 -1.000 0.317 0.001 Larus michahellis protected all the contacts 0.069 0.168 -0.105 0.916 0.084 0.047 within 100 metres 0.128 -1.983Columba palumbus huntable all the contacts 0.433 0.335 -2.389 0.017 within 100 metres 0.014 0.033 -1.880 0.060 Streptopelia decaocto protected all the contacts 0.075 0.121 -1.143 0.253 within 100 metres 0.338 0.316 -0.448 0.655 huntable Streptopelia turtur all the contacts 0.755 0.682 -0.578 0.563 within 100 metres 0.085 0.065 -1.497 0.134 Cuculus canorus protected all the contacts 0.709 0.830 -1.117 0.264 within 100 metres 0.001 0.000 -1.000 0.317 Otus scops protected -1.414 all the contacts 0.002 0.000 0.157 within 100 metres 0.006 0.007 -0.175 0.861 Athene noctua protected all the contacts 0.010 0.012 -0.368 0.713 within 100 metres 0.002 0.000 -1.414 0.157 Strix aluco protected all the contacts 0.005 0.002 -0.816 0.414 within 100 metres 0.003 0.000 -1.000 0.317 Asio otus protected all the contacts 0.003 0.000 -1.000 0.317 0.257 within 100 metres 0.004 0.001 -1.134 Caprimulgus europaeus protected all the contacts 0.006 0.002 -1.265 0.206 within 100 metres 0.816 0.405 -2.389 0.017 Apus apus protected 2.929 1.318 -2.706 0.007 all the contacts within 100 metres 0.000 0.001 -1.000 0.317 Alcedo atthis protected 0.001 0.317 all the contacts 0.000 -1.000 within 100 metres 0.000 0.004 -1.000 0.317 Merops apiaster protected all the contacts 0.004 0.005 0.000 1.000 within 100 metres 0.044 0.038 -0.578 0.563 Upupa epops protected all the contacts 0.178 0.202 -0.150 0.881 within 100 metres 0.007 0.011 -0.905 0.366 Jynx torquilla protected 0.026 0.032 0.496 all the contacts -0.681

Hunting effects on Bird communities: the case of the province of Perugia

species	pecies status contacts considered mean abundance		status	mean abundance		Wilcox	on's test
			Р	NP	Z	P (2-tailed)	
D		within 100 metres	0.056	0.052	-0.660	0.509	
Picus viridis	protected	all the contacts	0.273	0.282	-0.032	0.974	
. .		within 100 metres	0.044	0.032	-0.797	0.426	
Dendrocopos major	protected	all the contacts	0.061	0.049	-0.598	0.550	
~		within 100 metres	0.000	0.002	-1.000	0.317	
Calandrella brachydactyla	protected	all the contacts	0.000	0.006	-1.342	0.180	
<i><i>а</i>. <i>н н н</i></i>		within 100 metres	0.040	0.017	-1.026	0.305	
Galerida cristata	protected	all the contacts	0.092	0.051	-1.864	0.062	
T 11 1 1	1	within 100 metres	0.083	0.110	-0.971	0.331	
Lullula arborea	protected	all the contacts	0.275	0.344	-0.738	0.461	
41 1 ·	1 . 11	within 100 metres	0.340	0.203	-1.972	0.049	
Alauda arvensis	nuntable	all the contacts	0.512	0.393	-1.469	0.142	
		within 100 metres	0.000	0.002	-1.000	0.317	
Kiparia riparia	protected	all the contacts	0.000	0.002	-1.000	0.317	
11:		within 100 metres	0.523	0.667	-2.335	0.020	
Hirunao rustica	protected	all the contacts	0.790	1.012	-1.926	0.054	
D-1:-1		within 100 metres	0.264	0.450	-0.741	0.458	
Delicnon urbicum	protected	all the contacts	0.576	0.882	-0.209	0.834	
A .1	1	within 100 metres	0.036	0.030	-0.158	0.874	
Anthus campestris	protected	all the contacts	0.039	0.041	-0.434	0.665	
4 .4		within 100 metres	0.011	0.019	-0.676	0.499	
Anthus trivialis	protected	all the contacts	0.014	0.028	-0.888	0.375	
A 11 • 1 11	1	within 100 metres	0.000	0.001	-1.000	0.317	
Anthus spinoletta	protected	all the contacts	0.000	0.001	-1.000	0.317	
M 11 a	1	within 100 metres	0.004	0.030	-2.057	0.040	
мотасина пача	protected	all the contacts	0.004	0.037	-2.157	0.031	
M-4:11:		within 100 metres	0.013	0.000	-1.841	0.066	
<i>Molacilla cinerea</i>	protected	all the contacts	0.015	0.000	-1.826	0.068	
Motacilla alba	mustantad	within 100 metres	0.065	0.062	-0.171	0.864	
монасниа агра	protected	all the contacts	0.074	0.083	-0.303	0.762	
Tracladutes tracladutes	protoctad	within 100 metres	0.312	0.292	-0.544	0.586	
Troglodyles troglodyles	protected	all the contacts	0.462	0.533	-0.249	0.804	
Enith a out with soul a	mustantad	within 100 metres	0.695	0.833	-2.054	0.040	
Ernnacus rubecula	protected	all the contacts	0.855	1.362	-2.533	0.011	
Luscinia magarhynchos	protected	within 100 metres	0.132	0.153	-0.384	0.701	
Luscinia megarnynchos	protected	all the contacts	0.416	0.454	-0.595	0.552	
Phoenicurus ochruros	protoctad	within 100 metres	0.024	0.006	-1.676	0.094	
1 noenicurus ochruros	protected	all the contacts	0.026	0.010	-1.276	0.202	
Phoeniqueus phoeniqueus	protoctad	within 100 metres	0.011	0.012	-0.136	0.891	
1 noenicurus prioenicurus	protected	all the contacts	0.017	0.012	-0.464	0.643	
Saricola rubetra	protected	within 100 metres	0.001	0.003	-0.816	0.414	
<i>Suricola rubella</i>	protected	all the contacts	0.001	0.004	-1.134	0.257	
Saricola torquature	protected	within 100 metres	0.117	0.085	-1.194	0.233	
Sancola lorqualus	protected	all the contacts	0.175	0.138	-1.150	0.250	
Departhe garanthe	protected	within 100 metres	0.052	0.043	-1.073	0.283	
Genunine Genunine	protected	all the contacts	0.073	0.075	-0.236	0.814	
		un me contacto					
Monticola savatilis	protected	within 100 metres	0.002	0.000	-1.414	0.157	

species	status	contacts considered	mean abundance		Wilcox	on's test
			Р	NP	Z	P (2-tailed)
N	1	within 100 metres	0.001	0.004	-0.447	0.655
Monticola solitarius	protected	all the contacts	0.001	0.005	-0.447	0.655
T	14-1-1-	within 100 metres	0.830	0.740	-1.268	0.205
Turaus merula	nuntable	all the contacts	1.760	1.913	-1.143	0.253
T	14-1-1-	within 100 metres	0.027	0.010	-1.891	0.059
Turaus philometos	nuntable	all the contacts	0.038	0.017	-1.517	0.129
Trundura via sin smus	mustaatad	within 100 metres	0.034	0.029	-0.969	0.333
Turaus viscivorus	protected	all the contacts	0.078	0.053	-0.783	0.433
Cattia catti	protected	within 100 metres	0.024	0.021	-0.316	0.752
Centa cent	protected	all the contacts	0.054	0.063	-0.534	0.593
Cisticola iuncidis	protected	within 100 metres	0.094	0.057	-1.634	0.102
Cisicola funciais	protected	all the contacts	0.151	0.092	-2.186	0.029
Acrocephalus scirpaceus	protected	within 100 metres	0.011	0.000	-1.342	0.180
nerocephana serrpaceus	protected	all the contacts	0.011	0.000	-1.342	0.180
Acrocephalus arundinaceus	protected	within 100 metres	0.004	0.000	-1.000	0.317
nerocephanas ar anamaceus	protected	all the contacts	0.010	0.000	-1.604	0.109
Hinnolais polyglotta	protected	within 100 metres	0.044	0.022	-1.911	0.056
Interpretation polygiona	protected	all the contacts	0.053	0.029	-1.784	0.074
Sylvia atricanilla	protected	within 100 metres	1.023	1.032	-0.146	0.884
	protected	all the contacts	1.641	2.082	-2.752	0.006
Svlvia communis	protected	within 100 metres	0.022	0.051	-1.130	0.258
	Protocola	all the contacts	0.030	0.060	-1.071	0.284
Svlvia undata	protected	within 100 metres	0.001	0.006	-0.447	0.655
	1	all the contacts	0.001	0.006	-0.447	0.655
Sylvia cantillans	protected	within 100 metres	0.119	0.130	-0.164	0.870
>	1	all the contacts	0.144	0.155	-0.130	0.896
Sylvia melanocephala	protected	within 100 metres	0.059	0.062	-0.365	0.715
	1	all the contacts	0.106	0.086	-0.636	0.525
Phylloscopus bonelli	protected	within 100 metres	0.268	0.245	-0.193	0.847
	-	all the contacts	0.288	0.356	-0.724	0.469
Phylloscopus sibilatrix	protected	within 100 metres	0.000	0.002	-1.414	0.157
		all the contacts	0.000	0.004	-1.342	0.180
Phylloscopus collybita	protected	within 100 metres	0.302	0.327	-0.578	0.563
		all the contacts	0.487	0.696	-2.062	0.039
Regulus ignicapilla	protected	within 100 metres	0.074	0.052	-0.897	0.370
		all the contacts	0.077	0.052	-0.909	0.555
Muscicapa striata	protected	within 100 metres	0.004	0.009	-0.011	0.417
		within 100 matras	0.004	0.010	-1.020	0.303
Ficedula hypoleuca	protected	all the contacts	0.000	0.001	-1.000	0.317
		within 100 metres	0.000	0.001	0.437	0.517
Aegithalos caudatus	protected	all the contacts	0.220	0.209	-0.532	0.595
		within 100 metres	0.201	0.392	-1.821	0.069
Cyanistes caeruleus	protected	all the contacts	0.389	0.495	-1 622	0.105
		within 100 metres	0.315	0.271	-1,104	0.270
Parus major	protected	all the contacts	0.547	0.506	-0.841	0.400
		within 100 metres	0.155	0.046	-3.284	0,001
Periparus ater	protected	all the contacts	0.184	0.071	-2.894	0.004

species	status	contacts considered	mean abundance		Wilcoxon's test	
			Р	NP	Z	P (2-tailed)
	1	within 100 metres	0.040	0.094	-2.322	0.020
Poecile palustris	protected	all the contacts	0.040	0.111	-2.589	0.010
<i>a</i>	1	within 100 metres	0.056	0.074	-0.959	0.338
Sitta europea	protected	all the contacts	0.076	0.120	-1.379	0.168
	1	within 100 metres	0.052	0.039	-0.948	0.343
Certhia brachydactyla	protected	all the contacts	0.065	0.052	-0.449	0.654
ה י <i>ו</i> וי	1	within 100 metres	0.000	0.001	-1.000	0.317
Remiz pendulinus	protected	all the contacts	0.000	0.002	-1.414	0.157
0	1	within 100 metres	0.066	0.058	-0.112	0.911
Oriolus oriolus	protected	all the contacts	0.248	0.272	-0.479	0.632
T		within 100 metres	0.058	0.071	-0.783	0.434
Lanius collurio	protected	all the contacts	0.091	0.127	-1.196	0.232
T • .	1	within 100 metres	0.001	0.001	-0.447	0.655
Lanius senator	protected	all the contacts	0.001	0.001	-0.447	0.655
<i>а</i> , , , , , ,	1 . 11	within 100 metres	0.242	0.224	-1.011	0.312
Garrulus glandarius	huntable	all the contacts	0.363	0.417	-0.760	0.447
	14-1-1-	within 100 metres	0.085	0.076	-0.903	0.366
Ріса ріса	huntable	all the contacts	0.202	0.168	-0.814	0.416
~ · · ·		within 100 metres	0.000	0.000		
Pyrrhocorax pyrrhocorax	protected	all the contacts	0.012	0.000	-1.000	0.317
~ · ·		within 100 metres	0.093	0.015	-2.404	0.016
Corvus monedula	protected	all the contacts	0.259	0.129	-2.787	0.005
~ ·		within 100 metres	0.466	0.422	-0.559	0.576
Corvus cornix	huntable	all the contacts	1.847	1.519	-0.795	0.426
2		within 100 metres	0.000	0.000		
Corvus corax	protected	all the contacts	0.000	0.001	-1.000	0.317
a		within 100 metres	0.509	0.840	-1.483	0.138
Sturnus vulgaris	huntable *	all the contacts	0.973	1.390	-1.204	0.229
~		within 100 metres	0.925	1.414	-1.642	0.101
Passer domesticus	huntable *	all the contacts	1.189	1.832	-1.427	0.153
~		within 100 metres	0.186	0.452	-1.404	0.160
Passer montanus	protected	all the contacts	0.209	0.516	-1.402	0.161
		within 100 metres	0.787	0.557	-3.390	0.001
Fringilla coelebs	huntable *	all the contacts	1.365	1.314	-0.649	0.516
~ .		within 100 metres	0.469	0.444	-0.404	0.686
Serinus serinus	protected	all the contacts	0.618	0.619	-0.023	0.981
		within 100 metres	0.145	0.156	-0.244	0.807
Carduelis chloris	protected	all the contacts	0.345	0.408	-1.418	0.156
		within 100 metres	0.651	0.855	-1.222	0.222
Carduelis carduelis	protected	all the contacts	0.803	1.099	-1.838	0.066
		within 100 metres	res 0.203 0.257 -0.281 0.779			
Carduelis cannabina	protected	all the contacts	0.215	0.302	-0.948	0.343
	protected	within 100 metres	0.006	0.011	-0.884	0.377
Pyrrhula pyrrhula		all the contacts	0.009	0.018	-1.253	0.210
	protected	within 100 metres	0.009	0.015	0.000	1.000
Emberiza citrinella		all the contacts	0.012	0.034	-0.960	0.337
		within 100 metres	0.292	0.269	-0.541	0.588
Emberiza cirlus	protected	all the contacts	0.622	0.516	-1.259	0.208
			0.022	0.010	1.237	0.200

species	status	contacts considered	mean abundance		Wilcoxon's test	
			Р	NP	Z	P (2-tailed)
Emberiza cia	protected	within 100 metres	0.034	0.017	-1.617	0.106
		all the contacts	0.038	0.024	-1.183	0.237
Emberiza hortulana	protected	within 100 metres	0.017	0.011	-0.632	0.527
		all the contacts	0.021	0.012	-1.065	0.287
Emberiza calandra	protected	within 100 metres	0.247	0.148	-2.610	0.009
		all the contacts	0.300	0.254	-1.330	0.184

Figure 2. Seasonal values of the rarity index within protected and non-protected stations.

Acknowledgements – The present analysis has been undertaken in the context of the activities aimed at the drafting of the Wildlife Management Plan (Piano Faunistico Venatorio) of the Province of Perugia. Besides the author, took part in the field surveys: Enrico Cordiner, Laura Cucchia, Angela Gaggi, Daniele Iavicoli, Sara Marini, Alberto Masci, Monica Montefameglio, Andrea Maria Paci, Roberto Papi, Francesco Renzini. Giuseppina Lombardi and Umberto Sergiacomi (Osservatorio Faunistico della Regione Umbria) contributed to the database set up and to the GIS analysis.

REFERENCES

- Andreotti A., Pirrello S., Tomasini S. & Merli F., 2010. I Tordi in Italia. Biologia e conservazione delle specie del genere Turdus. ISPRA, Rapporti 123/2010.
- Blana H., 1980. Rasterkartierung und Bestandsdichteerfassung von Brutvogeln als Grudlage für die Landschafsplanung-ein Vergleich beider Methoden in selben Untersuchungsgebiet. In: Oelke H (ed). Bird Census Work and nature Conservation. Gottingen, pp. 32-54.

European Commission, 2008. Guide to sustainable hunting un-

der the Birds Directive. Council Directive 79/409/ECC on the conservation of wild birds. http://ec.europa.eu/environment/nature/conservation/wildbirds/hunting/guide_en.htm.

- Faralli U., 1991. Effetti dell'attività venatoria sulle popolazioni di anatre nei laghi di Chiusi e Montepulciano. Suppl. Ric. Biol. Selvaggina XVII : 333-336.
- Faralli U. & Lambertini M., 1991. Effetti della caccia sulle comunità di uccelli del lago di Montepulciano. Suppl. Ric. Biol. Selvaggina XIX : 113-124.
- Fornasari L., De Carli E., Brambilla S., Buvoli L., Maritan E. & Mingozzi T., 2002. Distribuzione dell'avifauna nidificante in Italia: primo bollettino del progetto di monitoraggio MI-TO2000. Avocetta, 26 (2): 59-115.
- Lambertini M., 1991. Effetti della caccia sulla dinamica di una comunità di uccelli in ambiente boschivo. Suppl. Ric. Biol. Selvaggina, 16: 727-731.
- Orsomando E., Raponi M. & Vizzari M., 2004. Realizzazione della Carta Geobotanica per la RERU. (Elaborato prodotto dal Gruppo Geobotanico nell'ambito del Progetto Rete Ecologica della Regione dell'Umbria).
- Robbins C.S., Bystrak D. & Geissler P.H., 1986. The Breeding Bird Survey: its first fifteen years, 1965-1979.United States Department of the Interior, Fish and Wildlife Service, resource publication 157: 1-169.

Schipani S. (ed), 2009. Statistiche ambientali 2009. ISTAT, Roma.

- Spina F. & Volponi S., 2008. Atlante della Migrazione degli Uccelli in Italia. Vols 1-2. Ministero dell'Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale.
- Tinarelli R., Ientile R., Lo Valvo M. & Velatta F., in press. Effetti dell'attività venatoria sugli uccelli acquatici in tre aree italiane. Atti XVI Convegno Italiano di Ornitologia, Cervia 21-25 settembre 2011.
- Velatta F., 1996. Effetto delle misure di protezione sulla comunità ornitica ripariale del Lago Trasimeno (Perugia, Italia centrale). Riv. ital. Orn., 66: 45-56.
- Velatta F., Lombardi G., Sergiacomi U. & Viali P. (eds), 2010. Monitoraggio dell'Avifauna umbra (2000-2005). Trend e distribuzione ambientale delle specie comuni. Regione dell'Umbria, Serie "I Quaderni dell'Osservatorio", Volume speciale.

Associate editor: Bruno Massa